Functional Studies of β-Glucosidases of Cytophaga hutchinsonii and Their Effects on Cellulose Degradation

نویسندگان

  • Xinfeng Bai
  • Xifeng Wang
  • Sen Wang
  • Xiaofei Ji
  • Zhiwei Guan
  • Weican Zhang
  • Xuemei Lu
چکیده

Cytophaga hutchinsonii can rapidly digest crystalline cellulose without free cellulases or cellulosomes. Its cell-contact cellulose degradation mechanism is unknown. In this study, the four β-glucosidase (bgl) genes in C. hutchinsonii were singly and multiply deleted, and the functions of these β-glucosidases in cellobiose and cellulose degradation were investigated. We found that the constitutively expressed BglB played a key role in cellobiose utilization, while BglA which was induced by cellobiose could partially make up for the deletion of bglB. The double deletion mutant ΔbglA/bglB lost the ability to digest cellobiose and could not thrive in cellulose medium, indicating that β-glucosidases were important for cellulose degradation. When cultured in cellulose medium, a small amount of glucose accumulated in the medium in the initial stage of growth for the wild type, while almost no glucose accumulated for ΔbglA/bglB. When supplemented with a small amount of glucose, ΔbglA/bglB started to degrade cellulose and grew in cellulose medium. We inferred that glucose might be essential for initiating cellulose degradation, and with additional glucose, C. hutchinsonii could partially utilize cellulose without β-glucosidases. We also found that there were both cellulose binding cells and free cells when cultured in cellulose. Since direct contact between C. hutchinsonii cells and cellulose is necessary for cellulose degradation, we deduced that the free cells which were convenient to explore new territory in the environment might be fed by the adherent cells which could produce cello-oligosaccharide and glucose into the environment. This study enriched our knowledge of the cellulolytic pathway of C. hutchinsonii.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Putative Type II Secretion System Is Involved in Cellulose Utilization in Cytophaga hutchisonii

Cytophaga hutchinsonii is a gliding cellulolytic bacterium that degrades cellulose in a substrate contact-dependent manner. Specific proteins are speculated to be translocated to its extracellular milieu or outer membrane surface to participate in adhesion to cellulose and further digestion. In this study, we show that three orthologous genes encoding the major components (T2S-D, -F, and -G) of...

متن کامل

Deletion of a Gene Encoding a Putative Peptidoglycan-Associated Lipoprotein Prevents Degradation of the Crystalline Region of Cellulose in Cytophaga hutchinsonii

Citation: Wang X, Wang Z, Bai X, Zhao Y, Zhang W and Lu X (2018) Deletion of a Gene Encoding a Putative Peptidoglycan-Associated Lipoprotein Prevents Degradation of the Crystalline Region of Cellulose in Cytophaga hutchinsonii. Front. Microbiol. 9:632. doi: 10.3389/fmicb.2018.00632 Deletion of a Gene Encoding a Putative Peptidoglycan-Associated Lipoprotein Prevents Degradation of the Crystallin...

متن کامل

FLP-FRT-based method to obtain unmarked deletions of CHU_3237 (porU) and large genomic fragments of Cytophaga hutchinsonii.

Cytophaga hutchinsonii is a widely distributed cellulolytic bacterium in the phylum Bacteroidetes. It can digest crystalline cellulose rapidly without free cellulases or cellulosomes. The mechanism of its cellulose utilization remains a mystery. We developed an efficient method based on a linear DNA double-crossover and FLP-FRT recombination system to obtain unmarked deletions of both single ge...

متن کامل

Location, formation and biosynthetic regulation of cellulases in the gliding bacteria Cytophaga hutchinsonii

An analysis of the recently published genome sequence of Cytophaga hutchinsonii revealed an unusual collection of genes for an organism that can attack crystalline cellulose. Consequently, questions were being raised by cellulase scientists, as to what mechanism this organism uses to degrade its insoluble substrates. Cellulose, being a highly polymeric compound and insoluble in water, cannot en...

متن کامل

Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1

The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017